Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling.
نویسندگان
چکیده
A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks.
منابع مشابه
Developmentally-Dynamic Murine Brain Proteomes and Phosphoproteomes Revealed by Quantitative Proteomics
Developmental processes are governed by a diverse suite of signaling pathways employing reversible phosphorylation. Recent advances in large-scale phosphoproteomic methodologies have made possible the identification and quantification of hundreds to thousands of phosphorylation sites from primary tissues. Towards a global characterization of proteomic changes across brain development, we presen...
متن کاملMultiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks.
Although recent developments in MS have enabled the identification and quantification of hundreds of phosphorylation sites from a given biological sample, phosphoproteome analysis by MS has been plagued by inconsistent reproducibility arising from automated selection of precursor ions for fragmentation, identification, and quantification. To address this challenge, we have developed a new MS-ba...
متن کاملQuantification of identical and unique segments in ethylene-propylene copolymers using two dimensional liquid chromatography with infra-red detection
Hyphenating High Temperature High Performance Liquid Chromatography (HT-HPLC) with High Temperature Size Exclusion Chromatography (HT-SEC) (High Temperature Two Dimensional Liquid Chromatography (HT-HPLC x HT-SEC or HT 2D-LC)) leads to an isocratic elution in the second dimension, which in turn enables to use IR detector (quantitative detection) for monitoring the eluting polymers. Experimental...
متن کاملEnrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis.
Phospho-proteomics relies on methods for efficient purification and sequencing of phosphopeptides from highly complex biological systems using low amounts of starting material. Current methods for phosphopeptide enrichment, e.g., immobilized metal affinity chromatography and titanium dioxide chromatography, provide varying degrees of selectivity and specificity for phosphopeptide enrichment. Fu...
متن کاملScreening of Potential Xanthine Oxidase Inhibitors in Gnaphalium hypoleucum DC. by Immobilized Metal Affinity Chromatography and Ultrafiltration-Ultra Performance Liquid Chromatography-Mass Spectrometry.
In this study, a new method based on immobilized metal affinity chromatography (IMAC) combined with ultrafiltration-ultra performance liquid chromatography-mass spectrometry (UF-UPLC-MS) was developed for discovering ligands for xanthine oxidase (XO) in Gnaphalium hypoleucum DC., a folk medicine used in China for the treatment of gout. By IMAC, the high flavonoid content of G. hypoleucum could ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular & cellular proteomics : MCP
دوره 15 2 شماره
صفحات -
تاریخ انتشار 2016